5.1 THE ROBINSON CRUSOE ECONOMY

Key ideas: Walrasian equilibrium allocation, optimal allocation, invisible hand at work

A simple economy with production

Two commodities, H consumers, one firm, an aggregate endowment vector $\omega = (\omega_1, 0)$.

Commodity 1 can be consumed or used as an input in the production of commodity 2.

The firm, with strictly convex production set \mathcal{Y} utilizes commodity 1 to produce commodity 2.

Consumers have identical convex homothetic utility function $U^h = U(x_1^h, x_2^h)$, $h = 1, \ldots, H$.

Given the assumption of identical homothetic preferences the consumers can be represented by a single consumer “Robinson Crusoe” who has an endowment of ω.
The Optimum

If Robinson Crusoe, with endowment vector ω, chooses the production plan y, his consumption vector is $x = y + \omega$.

The set of feasible consumption bundles is therefore the set $\mathcal{Y} + \omega$. This set is also depicted in Figure 1.

Robinson Crusoe then chooses the consumption bundle x^* that maximizes his utility from the bundles in the set $\mathcal{Y} + \{\omega\}$. Formally, x^* solves the following maximization problem:

$$\max_x \{ U(x) \mid x \in \mathcal{Y} + \{\omega\} \}.$$
Example:
\[Y = \{(y_1, y_2) \mid y_1 \leq 0, \ y_2^2 + 64y_1 \leq 0\}, \quad U(x) = \ln x_1 + \ln x_2, \quad \omega = (12, 0). \]

We substitute for \(x = y + \omega \) and write utility as \(U(y + \omega) = \ln(\omega_1 + y_1) + \ln y_2 \). Because utility is increasing, the optimum must be on the boundary of the production set so that \(y_1 = -y_2^2 / 64 \).

Substituting for \(\omega \) and \(y_1 \), \(U = \ln(12 - y_2^2 / 64) + \ln y_2 \).

FOC:
\[
\frac{dU}{dy_2} = \frac{-y_2 / 32}{12 - y_2^2 / 64} + \frac{1}{y_2} = 0. \quad \text{Hence} \quad \frac{y_2^2}{32} = 12 - \frac{y_2^2}{64}
\]

Solving, \(y_2^* = 16 \) and so \(y_1^* = -(y_2^*)^2 / 64 = -4 \)

Hence \(y^* = (-4, 16) \) and \(x^* = y^* + \omega = (8, 16) \).
Supporting hyperplane

Since \(x^* \) is the optimal consumption bundle the
Interior of the upper contour set \(X^* = \{ x \mid U(x) \geq U(x^*) \} \)
and the set \(Y + \{ \omega \} \) is empty. Therefore \(x^* = y^* + \omega \)
is on the boundary of the sets \(Y + \{ \omega \} \) and \(X^* \).
The line \(p \cdot x = p \cdot x^* \) is drawn tangent to the boundaries of
these two sets.
Since the sets are both convex, the line is a supporting line
for both sets. That is

(i) \(p \cdot x \leq p \cdot x^* \) for all \(x \in Y + \{ \omega \} \) and
(ii) \(p \cdot x > p \cdot x^* \) for all \(x \in \text{int } X^* \).
Robinson the Manager

(i) \(p \cdot x \leq p \cdot x^* \) for all \(x \in \mathcal{Y} + \{\omega\} \)

Therefore \(p \cdot (y + \omega) \leq p \cdot (y^* + \omega) \) for all \(y \in \mathcal{Y} \),
equivalently,
\(p \cdot y \leq p \cdot y^* \) for all \(y \in \mathcal{Y} \),

Note that with a price vector \((p_1, p_2)\) the total revenue of the
firm is \(p_2y_2 \) and total cost is \(p_1(-y_1) \) and so the profit of the firm is \(\pi(p, y) = p \cdot y \).

Therefore Robinson the manager maximizes the profit of the firm by choosing the production plan \(y^* \).
Crusoe the Consumer

At home Robinson becomes Crusoe the representative consumer. Given the price vector \(p \), the value of Crusoe’s endowment is \(p \cdot \omega \). As the single consumer, Crusoe also receives a dividend equal to the firm’s profit. Thus his total income is \(p \cdot \omega + p \cdot y^* = p \cdot (\omega + y^*) = p \cdot x^* \) and so his budget constraint is

\[
p \cdot x \leq p \cdot x^*
\]

We have argued that

(ii) \(p \cdot x > p \cdot x^* \) for all \(x \in \text{int } X^* \).

Thus any strictly preferred consumption bundle costs strictly more. Therefore \(x^* \) is a maximizer for

\[
\max_{x} \{U(x) \mid p \cdot x \leq p \cdot x^* = p \cdot (y^* + \omega)\}
\]

The optimal allocation is therefore a WE allocation.
Example (continued):

Robinson the price taking manager

Robinson the manager solves the following maximization problem:

\[\max_y \{ p \cdot y \mid y \in Y \} , \]

that is

\[\max_y \{ p \cdot y \mid y_1 \leq 0, 64y_1 + y_2^2 \leq 0 \} . \]

For a maximum the constraint must be binding. Then substituting for \(y_1 = -y_2^2 / 64 \), profit is

\[-p_1y_2^2 / 64 + p_2y_2 . \]

Solving for the profit-maximizing output we obtain,

\[y_2(p) = 32 \frac{p_2}{p_1} . \] Thus \(y_1(p) = -y_2(p)^2 / 64 = -16 \left(\frac{p_2}{p_1} \right)^2 \) and maximized profit is \(\Pi(p) = \frac{16p_2^2}{p_1} . \)
Crusoe the Price-Taking Consumer

Next consider the choice of Crusoe the consumer. The value of his endowment is \(p \cdot \omega \). In addition, as the single shareholder in the economy he collects all the dividends \(\Pi(p) = p \cdot y(p) \). His spending on corn is therefore constrained as follows: \(p \cdot x \leq p \cdot \omega + \Pi(p) \).

He therefore solves the following maximization problem.

\[
\text{Max}_{x} \left\{ \ln x_1 + \ln x_2 \mid p \cdot x \leq \Pi(p) + p \cdot \omega \right\}.
\]

Because utility is strictly increasing, the budget constraint must be satisfied with equality at the maximum. From the FOC, and appealing to the Ratio Rule,

\[
\frac{\partial U}{\partial x_1} = \frac{\partial U}{\partial x_2} \Rightarrow \frac{1}{p_1} = \frac{1}{p_2} = \frac{2}{p_1x_1 + p_2x_2} = \frac{2}{p \cdot \omega + \Pi(p)}.
\]

Therefore \(x_2(p) = \frac{1}{2} \left(\frac{\Pi(p) + p \cdot \omega}{p_2} \right) \).
Walrasian Equilibrium

We have already seen that \(y_2^*(p) = 32 \frac{p_2}{p_1} \) and \(\Pi(p) = \frac{16 p_2^2}{p_1} \).

Therefore demand for commodity 2 is \(x_2(p) = \frac{1}{2} \left(\frac{16 p_2}{p_1} + \frac{12 p_1}{p_2} \right) \).

It follows that excess demand for commodity 2 is

\[
z_2(p) = x_2(p) - y_2(p) = \left(\frac{8 p_2}{p_1} + \frac{6 p_1}{p_2} \right) - \frac{32 p_2}{p_1} = 6 \frac{p_1}{p_2} \left(1 - 4 \left(\frac{p_2}{p_1} \right)^2 \right)
\]

\[
= 0 \quad \text{if} \quad \frac{p_2}{p_1} = \frac{1}{2}.
\]

Thus \(\bar{p} = (2,1) \) is a WE price vector and the WE allocation is \(x^*(\bar{p}) = (16,8) \).

Class Exercise: Why must the other market clear as well?

Exercise: Show that the WE allocation is the same if there are 4 identical firms, each with a production set \(\mathcal{Y}^f = \{ y^f | 16y_1^f + (y_2^f)^2 \leq 0 \} \).